15 research outputs found

    TexPose: Neural Texture Learning for Self-Supervised 6D Object Pose Estimation

    Full text link
    In this paper, we introduce neural texture learning for 6D object pose estimation from synthetic data and a few unlabelled real images. Our major contribution is a novel learning scheme which removes the drawbacks of previous works, namely the strong dependency on co-modalities or additional refinement. These have been previously necessary to provide training signals for convergence. We formulate such a scheme as two sub-optimisation problems on texture learning and pose learning. We separately learn to predict realistic texture of objects from real image collections and learn pose estimation from pixel-perfect synthetic data. Combining these two capabilities allows then to synthesise photorealistic novel views to supervise the pose estimator with accurate geometry. To alleviate pose noise and segmentation imperfection present during the texture learning phase, we propose a surfel-based adversarial training loss together with texture regularisation from synthetic data. We demonstrate that the proposed approach significantly outperforms the recent state-of-the-art methods without ground-truth pose annotations and demonstrates substantial generalisation improvements towards unseen scenes. Remarkably, our scheme improves the adopted pose estimators substantially even when initialised with much inferior performance

    SPARF: Neural Radiance Fields from Sparse and Noisy Poses

    Full text link
    Neural Radiance Field (NeRF) has recently emerged as a powerful representation to synthesize photorealistic novel views. While showing impressive performance, it relies on the availability of dense input views with highly accurate camera poses, thus limiting its application in real-world scenarios. In this work, we introduce Sparse Pose Adjusting Radiance Field (SPARF), to address the challenge of novel-view synthesis given only few wide-baseline input images (as low as 3) with noisy camera poses. Our approach exploits multi-view geometry constraints in order to jointly learn the NeRF and refine the camera poses. By relying on pixel matches extracted between the input views, our multi-view correspondence objective enforces the optimized scene and camera poses to converge to a global and geometrically accurate solution. Our depth consistency loss further encourages the reconstructed scene to be consistent from any viewpoint. Our approach sets a new state of the art in the sparse-view regime on multiple challenging datasets.Comment: Code will be released upon publicatio

    View-to-Label: Multi-View Consistency for Self-Supervised 3D Object Detection

    Full text link
    For autonomous vehicles, driving safely is highly dependent on the capability to correctly perceive the environment in 3D space, hence the task of 3D object detection represents a fundamental aspect of perception. While 3D sensors deliver accurate metric perception, monocular approaches enjoy cost and availability advantages that are valuable in a wide range of applications. Unfortunately, training monocular methods requires a vast amount of annotated data. Interestingly, self-supervised approaches have recently been successfully applied to ease the training process and unlock access to widely available unlabelled data. While related research leverages different priors including LIDAR scans and stereo images, such priors again limit usability. Therefore, in this work, we propose a novel approach to self-supervise 3D object detection purely from RGB sequences alone, leveraging multi-view constraints and weak labels. Our experiments on KITTI 3D dataset demonstrate performance on par with state-of-the-art self-supervised methods using LIDAR scans or stereo images

    DDF-HO: Hand-Held Object Reconstruction via Conditional Directed Distance Field

    Full text link
    Reconstructing hand-held objects from a single RGB image is an important and challenging problem. Existing works utilizing Signed Distance Fields (SDF) reveal limitations in comprehensively capturing the complex hand-object interactions, since SDF is only reliable within the proximity of the target, and hence, infeasible to simultaneously encode local hand and object cues. To address this issue, we propose DDF-HO, a novel approach leveraging Directed Distance Field (DDF) as the shape representation. Unlike SDF, DDF maps a ray in 3D space, consisting of an origin and a direction, to corresponding DDF values, including a binary visibility signal determining whether the ray intersects the objects and a distance value measuring the distance from origin to target in the given direction. We randomly sample multiple rays and collect local to global geometric features for them by introducing a novel 2D ray-based feature aggregation scheme and a 3D intersection-aware hand pose embedding, combining 2D-3D features to model hand-object interactions. Extensive experiments on synthetic and real-world datasets demonstrate that DDF-HO consistently outperforms all baseline methods by a large margin, especially under Chamfer Distance, with about 80% leap forward. Codes and trained models will be released soon
    corecore